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Figure 2. Examples of ground marks left behind by suction vortices embedded inside
tornadoes. Locations and dates of occurrences are: (A.1) Decatur, Illinois tornado 3 April
1974; (A.2) Magnet, Nebraska tornado, 6 May 1975; (A.3) Homer Lake, Indiana tornado,
3 April 1974; (A.4) Dubuque, Iowa tornado, 28 September 1972; (A.5) and (A.6) Pearsall,
Texas tornado, 15 April 1973; (A.7) Mattoon Lake, Illinois tornado, 21 August 1977; (A.8)
Grand Island, Nebraska tornado, 3 June 1980. c© AMS, [31].
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Figure 3. A reflectivity image of a tornado showing self-similarity and a possible fractal
structure; c© Joshua Wurman, [49].

Figure 4. Construction of the Koch snowflake starting from an equilateral triangle and
showing the first four steps. The limiting fractal object is known as the Koch snowflake
and it has a fractal dimension of log 4/ log 3 ≈ 1.26186.
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as a “bidirectional cascade” in the recent work on transitions between 3D and 2D turbulence (see,
e.g. [9, 28]). We provide further insights in the conclusions of the paper.

In their study of the effect of rotation and helicity on self-similarity, Pouquet et al. state that “when
comparing numerical simulations, it was found that two runs at similar Rossby numbers and at similar
times (albeit at different Reynolds numbers) display self-similar behavior or decreased intermittency
depending on whether the flow had helicity or not” [52]. That tornadoes form in helical environments
may largely account for the degree of self-similarity that is often observed in them (i.e., the presence
of suction vortices), and suggests self-similarity may extend to smaller scales than currently known.
We propose that such self-similarity can arise within persistent vortex sheets along the rear flank and
forward flank downdraft gust fronts of tornadic supercells. In the proposed scenario, a sequence of
vortex roll-ups occurs, with each new generation of vortices forming from previous-generation
vortices wrapping around each other, ultimately resulting in vortices with roughly fractal cross
sections (geometric self-similarity).

The remainder of this paper is organized as follows. In Section 2 we summarize both observed
and studied power laws in the tangential velocity of tornadoes as a function of the radial distance
from the axis of the vortex. In Section 3 we briefly review the work in [19] and discuss power laws
in the vertical vorticity and pseudovorticity as a function of scale for some tornadic and nontornadic
mesocyclone data obtained from Doppler and dual Doppler data. In Section 4 we present our results of
a supercell thunderstorm simulation using the Bryan Cloud Model 1 and observe an agreement between
the work in [19] and a resulting power law for vorticity over multiple scales. In Section 5 we use the
vortex gas model from our previous paper [17], and use a modified argument due to Chorin to show
that an increase in fractal dimension of the cross section of a negative temperature vortex corresponds
to an increase in energy at large scales. Finally, Section 6 offers conclusions and describes future work.

2. Power laws in the tangential velocity of tornadoes

While it has been known since at least the 1950s that in tropical cyclones the tangential component
of the velocity, v, exhibits decay proportional to r−α with 0 < α < 1, where r is the radial distance from
the center of the cyclone [44], it has been only much more recently that similar power laws have been
observed for the tangential component of the velocity in tornadoes [36,62–64]. Such power laws could
perhaps have been anticipated based on the results obtained earlier in a vortex simulator [43], in which
a power law of the form r−0.63 has been found for a much smaller physical scale and very different
Reynolds number. In fact, recent theoretical results suggest that power laws with similar exponents
hold across a whole range of scales, ranging from a bathtub vortex, through dust devils and firewhirls,
to tornadoes and tropical cyclones [33].

We now briefly review some of the observations made by Wurman and his collaborators based
on mobile Doppler radar data analyses [36, 62–64]. In these papers, the tangential winds outside the
tornado core roughly fit the modified Rankine vortex model, in which the core is modeled as a solid-
core rotation with the mean tangential velocity depending linearly on radius (i.e., v ∝ r) and outside of
it decaying proportionally to r−α (i.e., v ∝ r−α). These results are summarized in Table 1.

The results of the analysis of data collected from an F2–F4 tornado that occurred in Dimmit, Texas
on June 2, 1995 indicate that the exponent α was in the range 0.5 to 0.7 [64]. The results of the analysis
of data collected from an F4 tornado that occurred in Spencer, South Dakota on May 30, 1998 indicate
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