Title
Supply Chain Resilience: Model Development and Empirical Analysis
Department/School
Operations and Supply Chain Management
Date of this version
2017
Document Type
Article
Keywords
Supply chain resilience, supply chain vulnerability, supply chain risk, interpretive structural modelling, MICMAC analysis, supply chain decision-making
Abstract
The purpose of this study is to develop a hierarchy-based model for supply chain resilience (SCRES), explaining the dynamics between various enablers and validating the model empirically. Literature review and a survey identified the enablers. Interpretive structural modelling (ISM) is used to analyse the levels of relationships among enablers. Based on their driving power and dependence, these enablers are also classified into different categories. Structural equation modelling is used to validate the hierarchical SCRES model and test the path analytical model. The study provides empirical justification for a framework that identifies 13 key enablers of resilient supply chain practices and describes the relationship among them using ISM. It also classifies them using Matrix of Cross Impact Multiplications Applied to Classification analysis on the basis of their driver power and dependence. The key finding is that using the proposed model, organisations can enhance their resilience potential by modifying their strategic assets. The model was tested using rigorous statistical tests including convergent validity, discriminant validity and reliability. The holistic view offered by the proposed model depicts the relationship among enablers to achieve SCRES.
Published in
International Journal of Production Research
Citation/Other Information
55(22), 6779-6800